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ABSTRACT

This is the second Semiannual Technical Summary of the MIT Lincoln Lab-
oratory Artificial Neural Networks for Seismic Data Interpretation project. The
effort during this period has concentrated upon phase labeling and event recogni-
tion networks for use in the DARPA/NMRO Intelligent Monitoring System (IMS)
for seismic surveillance. Perceptron networks were developed with standard IMS
parameters as inputs, improving upon the phase labeling performance of the expert
IMS. These networks were developed and tested using data sets containing 5,000 to
10,000 arrivals. An initial version of the expert system achieved a 79% success rate
compared with 86% for the neural network. A more recent and improved version of
the expert system achieved rates of 87% compared with 90% for an updated neural
network. Phase labeling experiments with sonograms and three-component autore-
gressive modeling for signal representation did not lead to further improvement. Two
event labeling experiments were carried out using three-component autoregressive
signal models with Radial Basis Function classification networks and involved on the
order of 200 events. Success rates were 96.6% for an earthquake/nonearthquake clas-
sification experiment and 91% for a Kola Peninsula event recognition experiment.
These results, using only autoregressive waveform representations, are encouraging
but very preliminary.
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1. INTRODUCTION

The overall objective of this research is to develop artificial neural networks to perform spe-
cialized recognition functions for nuclear test monitoring systems such as the DARPA Intelligent
Monitoring System (IMS) [1]. A specific goal is to develop networks that can be integrated into
the IMS to improve its automatic performance.

During this reporting period the greatest amount of work was done on phase labeling, with
encouraging results. Initial experiments with event labeling have also been promising. Preliminary
arrival time experiments, reported in the previous Semiannual Technical Summary [2], did not lead
to promising results with operational IMS data. Specifically, it was not possible to predict with
much confidence which IMS arrival time estimates should be corrected, much less predict how much
correction should be applied. Furthermore, our discussions with seismologists suggested that event
classification aids would be a more significant contribution than improvements in picking arrival
time. Thus it was decided to put aside the arrival time estimation work to concentrate on phase
and event classification.

Current research has used parametric data from the Center for Seismic Studies (CSS) and an
ARCESS/NORESS waveform database of over 200 events that was provided on optical disk by the
Science Applications International Corporation (SAIC). Some 50 of the SAIC-supplied events were
on hand at the start of this reporting period, and the remainder were received shortly thereafter
and integrated into the research database.

Chapter 2 summarizes the work on phase labeling, and Chapter 3 describes some initial event
labeling experiments.



2. PHASE LABELING

Phase labeling consists of attaching a phase label (e.g., Pn, Pg) to a seismic arrival. The

information used to do this can be standard signal parameters computed from waveforms, contex-

tual parameters such as the arrival order and time delay between arrivals, or nonstandard signal
features extracted from the waveforms. Each option was tested, and the best results thus far use

only standard signal parameter and contextual parameter information. Detailed results obtained
with standard parametric data and nonstandard signal representations follow.

2.1 Phase Labeling Using Standard Parametric Data

During the normal operation of the expert IMS, many parameters are computed to aid in
identifying phases and locating events. Because these parameters are readily available and are
believed to be useful in the phase identification (ID) process, it seems logical to use them as inputs
to a neural network for phase ID.

The process began with simple binary labeling experiments such as using a neural net to dis-
tinguish Pn from Pg. These experiments helped to identify the types of parameters and contextual
information that are important in the phase ID process. A larger network was then designed to dis-
tinguish among all the regional phases. Preliminary experiments and the most recent performance
estimates are described here.

Parametric data were obtained from the on-line database at the CSS [3] using Sequential
Query Language [4] and the following selection criteria:

" Arrival time within a specified interval

* Associated with some event by expert system and by analyst

" Classified as Pn, Pg, Px, Sn, Lg, Sx, or Rg by analyst

" Valid data available for all parameters of interest.

The arrival time interval varied with the experiment. The initial data set consisted of ARCESS
and NORESS arrivals for the time interval January through October 1990. Subsequent experimen-
tation required more than two arrays, and data for the interval November 1990 through April 1991
were obtained when two additional arrays (FINESA and GERESS) were operational. These data
were also used for Rg ID experiments, which were added to the expert system at the start of this
interval. Data for the interval April through June 1991 have been obtained for the most up-to-date
performance statistics.

The neural network used to produce the results described in this section is a simple single-layer
perceptron network [5]; multilayer perceptrons were also tried, but it was found that additional
layers did not improve performance.
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2.1.1 Distinguishing Pn from Pg

To investigate the effectiveness of neural networks on a simple problem, we first experimented
with separating Pn from Pg using a small database of 350 arrivals of each type, chosen randomly
from the available data. The expert IMS correctly identified 80% of these phases, basing its decision
on the following parameters:

" S-P time difference

" P-P time difference

" Number of P phases in this event

" Relative size of P phases in this event

" P-polarization (rectilinearity, emergence angle).

A list was made of the parameters that might be useful to distinguish Pn from Pg, and each
was tested individually as an input to a neural network. Because the networks were simple single-
layer perceptrons, this is equivalent to putting a threshold on a single input and labeling all phases
above the threshold as Pn and all phases below as Pg. After finding the best single input, two
inputs were tried and so on, repeating this procedure until the results did not improve by adding
more inputs. The results for one and two parameters are shown in Table 1.

The detecting beam parameter in Table 1 is a single bit indicating whether the phase was
detected on a horizontal or vertical beam. Slowness and period are calculated by the IMS array
processing and spectral analysis software. Rectilinearity, emergence angle, short-axis angle, hor-
izontal/vertical ratio, and maximum/minimum ratio are properties of three-component analysis
and are also computed by the IMS signal processing software. The P-polarization parameter is
a combination of rectilinearity and emergence angle as used by the expert system. Items such as
"only P-type?" are binary parameters that are set to 1 if this phase is believed to be the only P-type
phase in the event and set to -1 otherwise. The S-P time difference is the difference between the
arrival time of the largest S-phase and the first P-phase associated with the event.

Table 1 clearly shows that the single best parameter for distinguishing Pn from Pg is the
S-P time difference. This is physically reasonable because S-P is a good measure of distance, and
a P-phase is more likely to be Pg for a nearby event and Pn for one that is distant. When two
parameters are used, the best second choice is the bit indicating which P-arrival came first. This
works because when both Pn and Pg are present, the first arrival is more likely to be Pn and the
second Pg.

When all the parameters on the list are used together as inputs to a neural net, the system
achieves about 92% accuracy; the same accuracy could be achieved with only five parameters: S-P,
first P, slowness, P-polarization, and max/min ratio.
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TABLE 1

Distinguishing Pn from Pg

% Correct

Input Alone With S-P

Detecting beam 52 83
Slowness 67 81
Period 68 82
Rectilinearity 54 82
Emergence angle 60 82
Short-axis angle 52 82
Horiz/vert ratio 60 82
Max/min ratio 55 83
P-polarization 51 83
Only P-type? 51 81
First P-type? 57 90
Largest P-type? 53 82
S-P time difference 82

2.1.2 Distinguishing Sn from Lg

Because the results obtained with Pn and Pg phases looked promising, the problem of dis-
tinguishing Sn from Lg was also investigated. A small database was created of 350 Sn and 350 Lg
phases, chosen randomly from the available data. The expert IMS correctly identified 65%, basing
its decision on the following parameters:

* S-P time difference

" Predicted Lg time

" Detecting beam type (horizontal or vertical)

" Relative order of S-phases in this event

" Relative size of S-phases in this event

" S-polarization (short-axis angle, horizontal/vertical ratio).

As before, experiments began by listing parameters that might be useful to distinguish Sn
from Lg and testing each as an input to a neural network. The results that were obtained using

5



three parameters, including the two that gave the best performance by themselves, are listed in
Table 2.

The parameters in Table 2 are the same as those in Table 1 with the exception of an added
binary paipmeter, last S-type. The last-S bit is 1 if the phase is the last or the only S-phase in the
event. From the table it is evident that last-S is the single most useful parameter in distinguishing
Sn from Lg, because often if there is only one S-phase, it is Lg, and if there are two S-phases, the last
is Lg. Two parameters (last-S and S-P time) were chosen to be the basis for further experiments
because the difference between results obtained with various single inputs was small. Thus the
second column represents results obtained with three inputs to the neural network; the best was
86%.

TABLE 2

Distinguishing Sn from Lg

% Correct

With
Input Alone S-P.

Last-S

Detecting beam 62 83

Slowness 71 85

Period 53 84

Rectilinearity 62 84

Emergence angle 54 82

Short-axis angle 67 83
Horiz/vert ratio 61 81

Max/min ratio 61 82

S-polarization 65 84

Only S-type? 65 86

0 First S-type? 61 86

Last S-type? 76

Largest S-type? 67 85

S-P time difference 71
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When all the parameters are used as inputs to a neural net, the system achieves about

89% accuracy, which could also be achieved with seven parameters: last S, S-P, first S, slowness,

detecting beam, short-axis angle, and rectilinearity.

2.1.3 Distinguishing Rg f-om Lg

Another phase ID problem is distinguishing Rg from Lg. The expert system does this strictly
on the basis of period (or frequency). A simple experiment was performed to determine if other

parameters might also be helpful in this task. As before, an equalized database was created that
contained (all the available) 218 Rg phases and 218 randomly chosen Lg phases. As the results that

are summarized in Table 3 show, period is the single best parameter to distinguish Rg from Lg.
When two parameters are used the second should be largest-S, giving a performance of 88% correct.
Yet when all the parameters are used, performance is still 88% correct; there is no advantage to
using more than the period and largest-S.

TABLE 3

Distinguishing Rg from Lg

% Correct

With
Input Alone Piod

Period

Detecting beam 56 86

Slowness 68 86

Period 86 -

Rectilinearity 70 86

Planarity 61 86

Emergence angle 71 86

Short-axis angle 55 86

Horiz/vert ratio 77 86

Max/min ratio 58 86

Only S? 79 86

First S? 83 87

Last S? 54 86

Largest S? 76 88

S-P time difference 63 86
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2.1.4 Multiple Category Phase Labeling (Pn, Pg, Px, Sn, Lg, Sx, and Rg)

After the pairwise experiments, testing continued with the more complete set of labels used
by the expert IMS and with a larger database. A single-layer perceptron network was used with
seven output nodes, one for each phase label. It was discovered that performance could be further
improved by adding parameters beyond those used during the binary classification experiments,
because they did not include labeling phases such as Px or Sx and, therefore, did not identify useful
parameters for that purpose. For example, one added parameter (time delay) measures the differ-
ence in arrival times between a phase and one of the same generic type (P or S) that immediately
precedes it, expressed as a ratio to the S-P time difference. This parameter is occasionally ubeful
because the analyst is more likely to label as Px or Sx those phases that arrive immediately after
a preceding phase.

The network input parameters that were used to obtain the results presented in this section
follow in approximate order of importance, i.e., the items at the top contributed significantly to
system performance, whereas the items at the bottom affected performance by 0.1% or less.

" Expert system phase

" S-P time difference

" First P/S

" Last P/S

" Period

" Largest P/S

" Slowness

" Time delay

" Rectilinearity

" Short-axis angle

" Maximum/minimum ratio

" Detecting beam type

* Only P/S

" Emergence angle

" Horizontal/vertical ratio.

The final expert system phase (established during multiple array network processing by the expert
system) was initially used as the expert system phase parameter. More recent experiments have
shown that the neural network operates equally well with the initial phase ("iphase" in the CSS
arrival table), which is declared by the expert system using data from a single array.

8



Networks for phase labeling have been trained using several different data sets, each taken

over a different time interval, as described in Section 2.1. Each data set contained 5,000 to 10,000

arrivals, which were randomly divided into two groups of equal size, with half used for training and

half for testing. The groups then exchanged roles, and the results obtained from the two testing

runs were averaged to get the final performance statistics as given in Table 4.

TABLE 4

Phase Identification Performance (% Correct)

January November 1990 April
through through through

October 1990 April 1991 June 1991

Expert system alone (final ID) 79 84 87

Neural net alone 82 85 87

Neural net with expert system ID input 86 89 90

The neural network improved upon the expert system performance in every case, regardless
of the time interval used. As the expert system improved over time, neural network performance
improvements became somewhat smaller but still significant in the most recent results. Neural
network performance without expert system input is similar to expert system performance.

These results show that a neural network would improve the phase ID performance of the
expert IMS. The parameters needed by the neural network are readily available, because they are
the expert system's initial phase ID and others that are used by the expert system. The next
logical step in this research is to integrate phase labeling networks into the existing expert IMS for
refinement and extensive testing. The current plan is to work with SAIC toward this goal.

2.1.5 Performance for Different Arrays

Performance sensitivity to the array used for training is an important issue. Will a network
trained on one array give good performance when used with another? To investigate this question,
IMS data were used from the time period November 1990 through April 1991 to train four different
networks, one for each array. All four networks were then tested on data from all four arrays. (In

cases where the training and the testing array were the same, the data were split in half, and the
array was trained on one half and tested on the other.) The results are given in Table 5.

9



TABLE 5

Performance at Different Arrays (% Correct)

Testing

Training ARCESS FINESA GERESS NORESS

ARCESS 87 87 90 89
FINESA 83 90 88 89

GERESS 83 87 90 88
NORESS 85 87 90 89

Performance is best when the training and the testing data are from the same array; however,
when half the data from all four arrays is used for training and the other half for testing, performance
is very similar to that obtained with training and testing on each array individually. (The average
of the diagonal entries of Table 5 is 89%, which is equal to the 89% reported for the same time
period in Table 4.) Tentatively, the conclusion is that these four arrays are similar enough that
separate neural networks may not be necessary for each. Additional experiments with more data
will be required to confirm this result.

2.2 Phase Labeling Using Nonstandard Waveform Representations

Experiments have also been conducted with alternative waveform representations to see if
useful phase labeling features could be uncovered that are not routinely extracted by the IMS signal
processing software. The objective was to develop networks that could either perform the phase
labeling themselves or provide additional useful inputs to other networks such as those discussed
earlier. A key problem is finding a waveform representation that captures essential discrimination
features using only a modest number of parameters.

Two waveform representations, autoregressive parameters and sonograms, were tested. Nei-
ther approach by itself improved upon the performance of the expert IMS; however, it may be
possible to combine the parameters used in Section 2.1 and the new parameters derived from a
waveform representation to create a new neural network with better performance than either one
alone.

Waveform experiments used subsets of the waveform database provided by SAIC, which
contained a few hundred events. All the data were from the September 1989 through October 1990
interval. For the subsets that were used, the expert IMS phase labeling success rate was in the 76%
to 81% range, which compares with the 79% expert IMS success rate reported in Section 2.1.4 for
the same time period for a much larger number of arrivals.

10



2.2.1 Autoregressive Representation

One way to represent waveform data is to use an autoregressive model [6], which is common
in many signal processing applications and occasionally used for seismic signals [7] but is not
standard. Most applications have involved single waveforms-the output from a microphone for
speech applications and the output of a single, usually vertical, seismometer for seismic applications.
A decision was made to investigate the use of autoregressive models of three-component seismic
signals for phase labeling in the hope that such models might capture useful frequency and relative
phase information between the components that were missed by standard IMS signal measurements.

The experiments used three-component beamformed data derived from the waveform database
supplied by SAIC. Waveforms were segmented into nonoverlapping time windows, using the phase
arrival times provided by IMS. Each time window was considered individually, that is, completely
out of context of any other arrivals in the event. The horizontal components were rotated into
radial/transverse coordinates using the azimuth estimate provided by IMS. Slowness and direction
used for beamforming were also provided by IMS. The three-component beams were processed
using fourth-order, multichannel, autoregressive analysis [6]. The calculated parameters for each
time window then became the inputs to a neural network classifier.

The slowness of the arrival was also used to make a preliminary discrimination into P-class,
S-class, teleseisms, and noise. A supervised neural network classifier called a Radial Basis Function
(RBF) neural network [8] was used to discriminate between members of the same class, for instance,
Pn from Pg from Px. The input to the RBF consisted of the parameters calculated from the
autoregressive analysis.

Results using the RBF network are summarized in Table 6, with the first line indicating
results obtained with arrivals that are separated by enough time so that only one occurs in the
analysis time window, thus the autoregressive parameters are not influenced by the presence of other
arrivals. The second line indicates results with all available data, regardless of whether additional
arrivals occurred in the analysis window.

TABLE 6

Phase ID With Autoregressive Modeling

Results
Experiment (% Correct)

Single arrivals 75
Possible multiple arrivals 63
Note: Expert system performance was 80.5%.
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The results with autoregressive modeling are close to those of the expert system for the
single arrival cases. When the time between arrivals is short, however, this approach has difficulty
differentiating between multiple arrivals within the analysis window, and other information becomes
necessary. It may be possible to improve network performance by adding contextual information
to the RBF inputs or by combining the autoregressive inputs with the parameter-based network
that was discusssed earlier.

2.2.2 Sonogram Representation

An alternative to the autoregressive model is a sonogram representation. The motivation for
using sonograms is to exploit the time-varying frequency content of seismograms by teaching neural
network classifiers the time-varying frequency patterns common to different phases. Sonograms were
computed with a short-time Fourier transform [91 with overlapping Welch windows [10] to ensure
gradual transitions in both the time and frequency domains.

The neural network classifier used for this work is based on the ART2 classifier [11]. One
reason for using ART2 was to gain more experience with its unsupervised learning mode, which
makes it a candidate for future work involving the detection of novel events. ART2 was extended
by the addition of an extra layer to provide supervised labeling of its categories. The weights
connecting the ART2 output nodes to label nodes are intended to represent the probabilities that
the labels are correct. The resulting overall structure is referred to as a "semisupervised ART2
network."

The data used in these experiments were segments of unfiltered detecting beams included in
the databases supplied by SAIC. Phase arrivals were segmented on the basis of IMS time picks.
Segments started 1.6 s before the IMS pick and lasted for a total of 20.4 s. Time windows of 1.5 s
with 80% overlap were used to calculate the sonograms. The spectra were normalized using spectra
from a 20.4-s segment in the coda of the event, defined to be 2.4 times the difference between
the onset of the largest S and the first P phases (both determined by IMS) in this event. The
motivation for the normalization is to mitigate the effects of background noise, hide the spectral
modulation that occurs in mining blasts [12], and equalize the instrument response across all
frequencies. After normalization the data are logarithmically sampled along the time axis so that
the onset of the phase is most heavily weighted. The result is a two-dimensional sonogram that is
raster-scanned and used as input to one of three enhanced ART2 networks of the type described.
The determination as to which network to use is based on slowness, which is provided by the IMS.
The three networks represent P-class, S-class, and teleseisms or noise. According to the results in
Table 7 the performance of the expert IMS is superior to that of the sonogram/ART2 labeler. It
remains to be determined if sonogram/ART2 outputs can be combined with other parameters to
improve performance.
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TABLE 7

Phase ID Using Sonogramns

Expert Neural
Experiment System Network

(% Correct) (% Correct)

ARCESS 76 68
NORESS 80 66

13



3. EVENT LABELING

The goal of the current event labeling research is to develop analysis aids that can be inte-
grated into the IMS. These aids might flag events for more careful analyst review and make the
processing of typical events more routine. The hope is that networks might identify certain mines,
quarries, or seismic areas on the basis of typical waveforms. An event flagged as atypical would
be a candidate for more analysis, independent of the results of other processing elements in the
IMS. Disagreements between networks and those other elements would also be a warning that more
analysis is necessary.

Two exploratory event labeling experiments have been performed. One, an earthquake/
nonearthquake classification experiment, achieved a 96.6% success rate and provided a= example
of how networks might flag unusual events for more detailed analysis. Another experiment was
performed in which an attempt was made to recognize Kola Peninsula mines without using azimuth
or any other parametric information from the expert system; this experiment achieved a 91% success
rate.

Waveform data and event labels provided by SAIC were used for event labeling experiments.
SAIC provided Helsinki Bulletin classifications as labels when they were available and assigned
labels for other events. Three primary labels were used by SAIC: mine, earthquake, and explosion.
Explosions are events that are probably not earthquakes but are not located at known mine sites.
Many, if not all the explosion events could be mine events. In addition, some events were left
unlabeled.

An RBF neural network [8] classifier was used with feature vectors derived from a multichan-
nel autoregressive analysis [6], which was performed on a single time window containing all the
associated arrivals for each event, starting at the first arrival. Three component beams, steered to
the first P arrival speed, as well as single three-component instruments, were used in the exper-
iments. A minor waveform data problem was discovered; there were gaps in the waveform data
files stored on-line at CSS. The gaps, which seem to indicate a transmission problem, are almost
always an integral number of seconds and may occur at different times on the various components
of the stations within an array. Although not as obvious when beamformed data are used, the gaps
are obvious when single stations are processed. Some of the experiments reported below were per-
formed on single three-component stations to be certain that the data gaps were not significantly
affecting the results.

Event labeling experiments were performed using leave-one-out testing. Given N events, the
classifier was trained on N- I and tested on those remaining. The entire training/testing procedure
was repeated N times to test on all N events, individually. The total number of events was on the
order of 200, and this approach maximized the use of this relatively small number.

15



3.1 Earthquakes versus Nonearthquakes

Three different earthquake labeling experiments were performed using ARCESS waveform
data. The first trained networks to reproduce the event labels provided by SAIC. The waveform
data used were three-component ARCESS beams steered to the first P phase arrival. Beams with
data gaps were excluded but those for which the contributing three-component sensors might have
gaps were included (see Table 8). Unfortunately, the data included one event for which SAIC did
not provide a label. This produced minor peculiarities because a network cannot be meaningfully
trained and tested with a single event. In addition, as noted previously events that are labeled
explosions may in fact be mine blasts, and perhaps it is unfair to penalize the network labeler for
confusing these two classes. With this in mind, only the two events that the neural network labeled
earthquakes but the analyst did not, and the four events that the analyst labeled earthquakes
but the neural network did not, might be considered errors. With this interpretation, the neural
network misclassified 6 of 178 events for a performance of 96.63% correct.

TABLE 8

Four-Way Event Identification

Neural Network Labels
Analyst
Labels Unlabeled Mine Earthquake Explosion Total Percent

Unlabeled 0 1 0 0 1 1
Mine 0 137 1 5 143 80

Earthquake 0 3 10 1 14 8
Explosion 0 14 1 5 20 11
Total 0 155 12 11 178

Percent 0 87 7 6 100
Total correct was 85.29%.

6/178 earthquake errors yields 96.63% correct.

The second experiment was similar, but involved only two categories: earthquakes and non-
earthquakes. For this experiment all events that were not labeled as earthquakes by SAIC, including
the unlabeled one, were treated as nonearthquakes. Table 9 shows that the distribution of errors
was slightly different from the previous experiment, but overall performance was similar with about
97% correct.
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TABLE 9

Two-Way Event Identification

Neural Network Labels
Analyst

Labels Earthquake Nonearthquake Total Percent

Earthquake 9 5 14 8
Nonearthquake 1 163 164 92

Total 10 168 178

Percent 6 94 100

Total correct was 96.63%.

It is interesting to examine the errors made by the neural network in the dichotomous clas-
sification problem. The events for which errors were made are listed in Table 10, which shows the
confidences (probabilities) that the neural network assigned to the correctness of its labels for these
events. The second event (IMS ORID 191806) stands out because the neural network assigned
a confidence of 99.9% to its assessment that this event was not an earthquake. This event was
reported in the Helsinki Bulletin, but it was not given an identification, which suggests that the
analyst was unsure about it. The event occurred at 1:38 A.M., and it was not near any catalogued
mines. SAIC assigned its own "earthquake" label, a subjective low confidence measure. This is an
example of an unusual event that a neural network might help to identify as one that needs more
careful scrutiny.

TABLE 10

Label Confidences for Error Events

Earthquake Other ORID Event Date/Time
0.592 0.408 198311 90 05 23 / 19:04:24.003
0.001 0.999 191806 90 02 04 / 01:38:32.574
0.093 0.907 193280 90 04 02 / 13:46:23.256
0.487 0.513 198272 90 05 20 / 10:27:07.366
0.494 0.506 128464 89 10 17 / 20:42:08.973
0.203 0.797 160940 89 11 10 / 07:06:14.404
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The previous results were obtained using three-component, beamformed array data. Beam-
forming increases the signal-to-noise ratio and reduces the effects of data gaps in the waveform
files. On the other hand, because phase velocity is also a parameter needed to compute the beams,
a beam cannot be optimized for both S- and P-type phases. To investigate this collection of ef-
fects, the previous results were compared with earthquake/nonearthquake labeling using a single
three-component station with and without events with data gaps.

Table 11 shows that for individual three-component seismometers, there is not a significant
difference with and without the data gaps; however, the 92% to 93% performance with single three-
component signals is significantly less than the 96.6% success rate obtained using three-component
beams. Apparently, for this experiment the presence of data gaps was less important than the
improved signal-to-noise ratio that beamforming provided.

TABLE 11

Single Three-Component Station Event ID

Percent
Gaps Correct Events

Without data gaps 92.61 71
With data gaps 92.96 230

3.2 Kola Peninsula Mines

The Kola Peninsula is an active mining region; approximately 25% of the events in the
database that were received from SAIC were from that region. All the Kola events were labeled as
mining explosions by SAIC. The experiments reported in this section involve discrimination between
Kola Peninsula events and all others in the current database. For these experiments azimuth and
distance were not provided to the neural network, although the horizontal components of the data
were rotated to correspond to the approximate radial and transverse directions estimated by the
expert system for the first arrival of the event. Like the experiments in Section 3.1, labeling was
based solely on the coefficients derived from the autoregressive analysis of the waveforms.

Table 12 shows Kola Peninsula event classification results that were obtained by using data
from the central ARCESS three-component station. Only waveforms without data gaps were used.
Expert IMS performance was estimated by comparing the automatic expert system locations with
the final IMS output after analyst corrections were applied. Neural network performance was
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estimated by comparing it with the final IMS output. Using only waveform information, the neural
network correctly identified Kola events almost as well as did the expert system when it used
explicit array-based event location algorithms. The percent Kola and non-Kola events were about
the same for the expert system and the neural network, but they did not make errors on the same
events.

TABLE 12

Kola Peninsula Event Identification (No Dropouts)

Neural Network Labels
Analyst-
Adjusted
Locations Kola Pen Other Total Percent

Kola Pen 10 2 12 18

Other 4 50 54 82
Total 14 52 66

Percent 21 79 100
Total correct was 90.91%.

Estimated expert system performance was 95.45%.

To gain a better understanding of data gap effects, networks were also trained and tested
using only signals containing data gaps with the outcome shown in Table 13. A comparison with
Table 12 suggests that the gaps were short enough so that they did not markedly influence the
results.

Beams steered to the first P arrival were also used to train and test a Kola Peninsula mining
event labeler. The performance, 89% correct, was not as good as for a single three-component
station. The reason may be that the beamforming velocity filtering is discarding useful information
from other phases. This possibility will be investigated using separate beams steered to each
detected and associated phase.
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TABLE 13

Kola Peninsula Event Labeling (With Data Gaps)

Neural Network Labels
Analyst

Labels Kola Pen Other Total Percent

Kola Pen 32 9 41 19

Other 10 168 178 81
Total 42 177 219
Percent 19 81 100
Total correct was 91.32%.

Estimated expert system performance was 96.80%.
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